
From MCPmag.com:
Feature Article

Automate Your Administration
Speed up and simplify your work by applying these 10
scripts to the job.

by Chris Brooke

There’s an old joke that goes, “How
many computer programmers does it
take to screw in a light bulb?” Answer:
“Can’t be done. That’s a hardware
problem.” While that may have been
true “back in the day” (back when it
was funny), it no longer truly
represents life in IT. The lines have blurred. Developers now
take an active role in choosing and assembling hardware for
their applications. By the same token, network administrators
have found themselves in the unenviable position of having to
hone software-development skills in order to speed and simplify
their administrative tasks, lest they end up spending every

night at the office. As the father of a 1-year-old, believe me when I say that I
would rather be home bouncing said munchkin on my knee than in the server
room waiting for a backup to complete so that I can finish the rest of the server
maintenance.

Enter administrative scripting.

Whether you’re a network administrator looking to speed up certain mundane
tasks or a closet code-monkey who likes to automate everything you possibly can,
scripting can simplify your life and help ensure you get plenty of quality munchkin-
time. To that end, I’ve trudged through mountains of scripts and narrowed them
down to 10 that you’re sure to find indispensable. As part of my search criteria, I
looked for scripts that not only accomplished a vital task, but also could be easily
modified so that you can extend them as your scripting skills evolve. Along with
each script represented here, I’ve highlighted relevant sections and included
sample use-case information.

One final caveat before we dive in to these
scripts: I’ve left them in their original form,
whether or not copyright was explicitly
specified. As such, you’ll notice differences in
how variables are declared—with or without
some form of Hungarian Notation,
formatting, comments and so on. Most are
well commented and you should be able to
interpret them for future editing. Where
necessary, I’ve provided additional
explanation in the text discussing the script.

DumpUsers.vbs by Tim Hill
A few years ago, in my column, “Windows Utilities Inside Out,” I highlighted a
utility called DumpACL. It exports NT user and group information, along with all
NTFS Access Control Lists (ACLs) for a given computer. No column before or since
has generated as many inquiries. To this day, I get readers e-mailing me
requesting it. This script was published by Tim Hill in his book, Windows 2000
Windows Script Host. It uses Active Directory Services Interface (ADSI) to perform
half of the DumpACL operation—namely: dumping users. The benefit of this script
is that it dumps extensive user information, including the User Flags, into a nicely
formatted Excel spreadsheet. Below I’ve highlighted some of the relevant code,
which exists almost entirely in the MAIN() function.

'//
' $Workfile: DumpUsers.vbs $ $Revision: 2 $ $Date: 7/19/99 12:19a $
' $Archive: /TimH/Projects (SCC)/Books & Articles/Macmillan/Windows 2000
' System Scripting (1999)/Scripts/DumpUsers.vbs $

print article

Related Editorial

Want more?
See the back issues
vault for Premier
area members only.

Broaden Your
Sites: The Site
Server 3.0 Story
A Course on Site
Server
Search the World
Over

Tip

You can download the complete
set of scripts by right-clicking on
this link and saving the file to
disk: Scripting.zip (29KB)
Problems downloading this
script? Send e-mail to
michael.domingo@mcpmag.com;
put "Scripting.zip" on subject
line of message.

Page 1 of 11

3/12/2002file://D:\DOCUME~1\czw1bl\LOCALS~1\Temp\triDCJNN.htm

' Copyright (c) 1998 Tim Hill. All Rights Reserved.
//
' Dump user accounts to an Excel spreadsheet
... <snip>
Function Main
 Trace 1, "+++Main"
 Dim sAdsPath, sExcelPath, oSheet, oExcel, oUser, oAdsObj
 …<snip>
 End If
 sAdsPath = "WinNT://" & Wscript.Arguments(0)
 sExcelPath = g_oFSO.GetAbsolutePathName(Wscript.Arguments(1))

 ' Prepare ADSI computer/domain object
 On Error Resume Next
 Set oAdsObj = GetObject(sAdsPath)
 If Err.Number <> 0 Then
 Wscript.Echo sAdsPath & ": not found (0x" & Hex(Err.Number) & ")"
 Wscript.Quit(Err.Number)
 End If
 On Error Goto 0

 …<snip>
 ' Enumerate all users in the computer/domain
 oAdsObj.Filter = Array("User") ' Filter user accounts only
 ix = 0
 For Each oUser In oAdsObj ' For each user account...
 DumpAccount oSheet, ix, oUser ' Go add to sheet
 ix = ix + 1 ' Bump index
 Next

 ... <snip>
 ' Return value is passed to Wscript.Quit as script exit code
 Main = 0
End Function

After all the “snipping,” we can see the main logic of
the script. It uses the WScript.Arguments collection to
retrieve the computer/domain that you want to work
with. Indeed, it speeds things up if you specify the
type of object you want to work when starting the
script, but it’s by no means required. For example, at
the command line, you can enter:

C:\cscript dumpusers mycomputer,computer
c:\myspreadsheet.xls

Or simply type this:

C:\cscript dumpusers mycomputer c:\myspreadsheet.xls

and let the script figure it out for itself.

It then uses ADSI and applies a filter so that only users will be dumped (I’m
seeing great possibilities already! With just a little editing, we could dump groups,
computers in a domain and so on) It then uses another SUB, “DumpAccount,” to
place the information in the spreadsheet. Figure 1 shows the spreadsheet I
received when I ran the script on my computer.

From Windows 2000
Windows Script Host,
by Tim Hill
ISBN 1578701392, $35
Copyright 2000;
reproduced by
permission of New
Riders

Page 2 of 11

3/12/2002file://D:\DOCUME~1\czw1bl\LOCALS~1\Temp\triDCJNN.htm

This script offers significant advantages over standard GUI tools or even the
DumpACL utility. For instance, with very little editing, you could modify this script
to take users from a spreadsheet and add them to a computer or domain (a task
that, depending upon the size of your organization, you, no doubt, perform quite
often).

AddUsers.vbs by Microsoft
Just in case you don’t have the time to edit (or simply don’t feel like editing) the
previous script to add users, I’ve included this script from the MSDN Scripting Web
site. It’s also included in the Windows NT Server 4.0 Resource Kit. It reads a list of
users from an Excel spreadsheet and adds them using ADSI. This script is
somewhat shorter than Dump Users.vbs, as there’s no spreadsheet formatting to
include. It comes with a spreadsheet already configured in the proper format—all
you have to do is add the names. Also, this script is designed to add users to
Active Directory using the LDAP provider, rather than into an NT domain using the
WinNT provider. If you’re still using NT domains (and, according to the latest
numbers, there are a lot of you!), this script can also be easily edited to work with
the WinNT provider.

' Windows Script Host Sample Script
'
' --
' Copyright (C) 1996 Microsoft Corporation
'
…<snip>
' The sample uses the directory root
' "LDAP://DC=ArcadiaBay,DC=Com,O=Internet"
' Change the directory path in the EXCEL spreadsheet to match your DS
' before running this sample.

... <snip>

Do While oXL.activecell.Value <> ""

 ' if the requested OU is a new one...
 If oXL.activecell.Value <> ou Then
 ' Pick up the OU name...
 ou = oXL.activecell.Value
 ' Compose the ADSI path...
 s = "LDAP://" + ou+"," + root

 ' Show it to the user...
 WScript.Echo s

 ' And get the object
 Set c = GetObject(s)
 End If

 ' Compose the user common name name from first and last names...
 uname = "CN=" + oXL.activecell.offset(0, 1).Value + "" +
 oXL.activecell.offset (0,2).Value

 ' Create the new user object...
 Set u = c.Create("user", uname)

Figure 1. DumpACL generates an Excel report of users. (Click image
to view larger version.)

Page 3 of 11

3/12/2002file://D:\DOCUME~1\czw1bl\LOCALS~1\Temp\triDCJNN.htm

 ' Set the properties of the new user
 u.Put "givenName", oXL.activecell.offset(0, 1).Value ' givenName
 u.Put "sn", oXL.activecell.offset(0, 2).Value ' sn
 u.Put "mail", oXL.activecell.offset(0, 3).Value ' Email
 u.Put "sAMAccountName", oXL.activecell.offset(0, 4).Value ' Sam Acct
 u.Put "telephoneNumber", oXL.activecell.offset(0, 5).Value ' Phone

 ' Enable the account, must change pw @ logon
 u.Put "userAccountControl",16

 ' ... and update the DS
 u.SetInfo

 ' Done with this object, discard it
 Set u = Nothing

 ' Step to the next user...
 oXL.activecell.offset(1, 0).Activate ' Next row
Loop

' ... rest of script

This script doesn’t use any user-defined SUBS or FUNCTIONS. Instead, the Do…
Loop shown contains the bulk of the script logic. The script uses automation to
open the spreadsheet, making it a simple matter to step through the cells and
acquire the user data. This is then transferred to the ADSI object and entered as
user information. Once the loop has reached the end of the list, script execution
terminates.

Adding users is a common, yet tedious, administrative task. This script simplifies
and speeds this process as-is. Also, you could tweak it a bit to perform such tasks
as group maintenance, modification of user rights and so on.

Page 4 of 11

3/12/2002file://D:\DOCUME~1\czw1bl\LOCALS~1\Temp\triDCJNN.htm

Shortcut.vbs by Microsoft
This script almost didn’t make the first cut when I was trudging through the
volumes of possible programs to feature here. In the first place, it’s short and
doesn’t do much—only puts a shortcut on the desktop. However, the more I
thought about it, the more I realized it’s likely to end up being one of those little
scripts that you’ll use all the time. Originally, it was one of the samples included as
part of the Windows Script Host documentation download. Here’s the bulk of it:

' Windows Script Host Sample Script
'
' --
' Copyright (C) 1996-1997 Microsoft Corporation
'
... <snip>

' Read desktop path using WshSpecialFolders object
DesktopPath = WSHShell.SpecialFolders("Desktop")

' Create a shortcut object on the desktop
Set MyShortcut = WSHShell.CreateShortcut(DesktopPath & "\Shortcut to
notepad.lnk")

' Set shortcut object properties and save it
MyShortcut.TargetPath= _
 WSHShell.ExpandEnvironmentStrings("%windir%\notepad.exe")
MyShortcut.WorkingDirectory = _
 WSHShell.ExpandEnvironmentStrings("%windir%")
MyShortcut.WindowStyle = 4
MyShortcut.IconLocation = _
 WSHShell.ExpandEnvironmentStrings("%windir%\notepad.exe, 0")
MyShortcut.Save

The Future of Scripting: ASP.NET

Although the scripts highlighted here were, for the most part ,written for the
Windows Script Host, they can be easily adapted to provide their functionality
to a Web page via Active Server Pages. Consequently, ASP pages provide a
wealth of functionality from which you can extract scripts. Once all references
to intrinsic ASP objects have been removed, you’re left with plain ol’ VBScript.
At least, that’s how it has been until now.

The Microsoft .NET framework has introduced a new Web platform called
ASP.NET. These Web pages are differentiated from standard ASP pages by
their extension “ASPX.” ASP.NET pages require that the .NET Framework is
installed on the Web server. They can coexist side-by-side with ASP, but a
different engine handles processing for ASPX files. Why the difference?
ASP.NET is fully integrated with the .NET Framework. Rather than relying on
VBScript or JScript (which are just subsets of larger, more complete
development languages), ASP.NET pages can be developed in any .NET
language such as Visual Basic.NET, C# or even Visual C++.NET. This gives
Web pages the full power of the underlying development languages.

You may ask, “How does this affect me?” Well, maybe not at all—or perhaps a
great deal. If your duties as a beloved “server-jockey” include some Web
development, it would be in your best interest to start learning at least one of
the .NET languages now. If you currently use mostly JScript in your scripts, I
recommend J# or C#. If you have become accustomed to VBScript, take a look
at Visual Basic.NET.

I’m not trying to convert any of you into bonafide “code monkeys” (perish the
thought!), but the times, they are a-changin’. In this era of volatile technology
stocks and an uncertain job market, the ones with the most skills win. See ya
at the finish line!
—Chris Brooke

Page 5 of 11

3/12/2002file://D:\DOCUME~1\czw1bl\LOCALS~1\Temp\triDCJNN.htm

WScript.Echo "A shortcut to Notepad now exists on your Desktop."

Not much on its own, but there’s some real benefit to be found in combining this
script with others. Just think for a minute about how many times you have to look
for something, such as the log file for your backup software or perhaps the
spreadsheet created by the “DumpUsers” script. Putting a shortcut on the desktop
automatically is a real time-saver. Left a script running overnight and need to view
the error log first thing in the morning? Put a shortcut to it on your desktop. Need
everyone in your office to download the latest virus-checking software? Put a
shortcut on their desktop! While the sample script has “Notepad.exe” hard-wired
into it as the application started from the shortcut, this can be whatever you want.
It can even be specified by arguments or as a persisted value in a text file or
database.

SvcStat.vbs by Jeff Honeyman
A large part of NT administration relates to services.
Indeed, starting, stopping and querying service
settings such as Log On Account, Startup Mode and so
on are critical tasks that occur quite frequently. This
script from Jeffrey Honeyman's Scripting Windows
2000 uses Windows Management Instrumentation
(WMI) to query the status of a service on a given
computer. Is the Scheduler service running on the DC?
Hmm… let’s check!

' SvcStat.vbs
' Copyright 2000 by Jeffrey Honeyman
' Published in Scripting Windows 2000 by McGraw-Hill Professional Publishing
... <snip>

Function FindComputer(box)
 Set objBoxes=GetObject("LDAP://CN=computers,DC=domain,DC=com”)
 For Each thing in objBoxes
 If ucase(thing.cn) = ucase(box) Then
 FindComputer=thing.ADsPath
 Exit Function
 End If
 Next
End Function

Function FindDC(box)
 Set objBoxes=GetObject("LDAP://OU=Domain Controllers,DC=domain,
DC=com")
 For Each thing in objBoxes
 If ucase(thing.cn) = ucase(box) Then
 FindDC=thing.ADsPath
 Exit Function
 End If
Next
End Function

... <snip>

Set objSys=GetObject(patth)
Set objSvc=objSys.GetWMIServices
Set objServs=objSvc.instancesOf("WIN32_Service")
For Each thing in objServs
 If ucase(thing.Properties_("DisplayName"))=ucase(serv) Then
 s="Properties for " & serv & " on " & box & ":" & vbCRLF & vbCRLF
 For Each prop in thing.Properties_
 s=s & prop.name & " = " & prop.value & vbCRLF
 Next
 End If
Next

... <snip>

From Scripting
Windows 2000, by
Jeffrey Honeyman
ISBN 007212444X,
$44.99
Copyright 2000;
reproduced by
permission of McGraw-
Hill/Osborne Media

Page 6 of 11

3/12/2002file://D:\DOCUME~1\czw1bl\LOCALS~1\Temp\triDCJNN.htm

msgbox s

The approach here is straightforward. The functions FindComputer and FindDC are
used to locate the specified computer, whether it’s a domain controller or not.
Once it has been located, WMI is used to get all the properties of the specified
service by comparing every WIN32 service to the one specified on the command
line. Once a match is found, the script builds and displays a msgbox. This script
stands alone as a valuable tool to query service information.

ProcStat.vbs by Jeff Honeyman
Another common administrative task is troubleshooting failed processes. Because
many applications don’t run as services (for instance Outlook, Word and Windows
Messenger), it’s useful to be able to query a running process. This script is similar
to SvcStat.vbs (also from Scripting Windows 2000), except that it provides
information about a particular process. The complete script available for download
online includes a line that displays the correct usage, including what command-line
arguments to use.

' ProcStat.vbs
' Copyright 2000 by Jeffrey Honeyman
' Published in Scripting Windows 2000 by McGraw-Hill/Osborne Media
...<snip>

box=WScript.Arguments(0)
proc=WScript.Arguments(1)

... <snip>

Set objSys=GetObject(patth)
Set objProc=objSys.GetWMIServices
Set objProcs=objSvc.instancesOf("WIN32_Process")
For Each thing in objProcs
 If ucase(thing.Properties_("name"))=ucase(proc) Then
 c=c+1
 s=s & "Properties for " & proc & " on " & box & ":" & vbCRLF & vbCRLF
 For Each prop in thing.Properties_
 s=s & prop.name & " = " & prop.value & vbCRLF
 Next
 End If
Next

If c=0 Then
 WScript.Echo "Process " & proc & " does not exist on computer " & box
 WScript.Quit (5558)
End If

If c>1 Then
 WScript.Echo "There are "& c & "instances of process "& proc * " on system" &
box & vbCRLF & s
Else
 msgbox s

A significant difference between processes and services is that there can be more
than one instance of a process running at any given time. As such, this script
includes a counter variable “c” to count the number of instances for the specified
process. If more than one is running, the output is echoed to the command line. If
there’s only one instance, it’s placed in a msgbox just as it was for services.

RemoteReboot.vbs/RemoteShutdown.vbs
by Microsoft
These are actually two separate scripts, but with one common goal: to use WMI to
perform that mainstay of troubleshooting skills—the reboot! How often do you
have to leave your desk and trudge across the office (or perhaps even up some
stairs) to reboot a server? Yes, Windows 2000 significantly reduced the number of
reboots required when installing software and upgrading the OS, but they still
happen. If you have the spare time and you like getting the extra exercise, feel

Page 7 of 11

3/12/2002file://D:\DOCUME~1\czw1bl\LOCALS~1\Temp\triDCJNN.htm

free to keep walking. If you’re as busy as I am, try this script. It comes from the
Microsoft WMI SDK downloaded at http://download.microsoft.com/download/
platformsdk/sdkx86/1.5/NT45/EN-US/wmisdk.exe.

' Copyright (c) 1997-1999 Microsoft Corporation
'
**
'
' WMI Sample Script - REMOTE system reboot (VBScript)
' ... <snip>
Set OpSysSet=GetObject(_
 "winmgmts:{(_
 RemoteShutdown)}//REMOTE_SYSTEM_NAME/root/cimv2").ExecQuery_
 ("select * from Win32_OperatingSystem where Primary=true")

For Each OpSys in OpSysSet
 OpSys.Reboot()
Next

And in case you just need to shut it down…

OpSys.Shutdown()

I suppose the next logical step would be to put both of these scripts into one .WSF
file in two different jobs, so that you can select whether to reboot or shutdown
when you run it. Keep a shortcut to this script on your desktop; you’ll find yourself
using it often.

BackupEventLog.vbs by Microsoft
One of the most useful troubleshooting tools an administrator has at his or her
disposal is the NT Event Log. When “unpredictable” behavior occurs, the event log
is usually the first place to look. The following script uses WMI to back up the
application event log to a file. I downloaded this from the same site as the
previous script.

' Copyright (c) 1997-1999 Microsoft Corporation
'
**
'

... <snip>

Set LogFileSet=GetObject("winmgmts:{(Backup,Security)}").ExecQuery(_
"select * from Win32_NTEventLogFile where LogfileName='Application'")

For Each Logfile in LogFileSet
 RetVal = LogFile.BackupEventlog("c:\BACKUP.LOG")
 if RetVal = 0 then WScript.Echo "Log Backed Up"
Next

This is another short but essential script for your toolbox, and one that can be
easily modified for even more powerful behavior. For example, you could execute
the script remotely and have it use automation to e-mail the log file to you (for,
say, troubleshooting a location off-site). By simply changing the LogFileName in
the GetObject line, we can dump the system or security logs, as well. Priceless.

SendMail.vbs by Anonymous
I bet I had you a bit worried in the last script when I mentioned sending an e-mail
as if there were nothing to it, didn’t I? Not to worry. This script, which comes from
“anonymous” in the Windows Script Community at MSN.com, can be used with the
above event log script, or anywhere you need to send an e-mail via automation.
Let’s face it: Windows doesn’t always run perfectly. Errors occur, servers go
offline. Stuff happens. The ability to notify the on-call administrator via an e-mail
message will minimize down-time and make you look indispensable in the eyes of
your boss. (If it looks familiar, I wrote a script almost identical to it for a previous

Page 8 of 11

3/12/2002file://D:\DOCUME~1\czw1bl\LOCALS~1\Temp\triDCJNN.htm

“Scripting for MCSEs” column before finding this one.)

' SendMail.vbs
' Published 2/27/01 - Windows Script Community, MSN.com

Set WSHShell = WScript.CreateObject("WScript.Shell")
Set appOutl = Wscript.CreateObject("Outlook.Application")

' Set a reference to the MailItem object.
Set maiMail = appOutl.CreateItem(0)
' Get an address from the user.
maiMail.Recipients.Add(InputBox("Enter name of message recipient"))
' Add subject and body text.
maiMail.Subject = "Testing mail by Automation"
maiMail.Body = "Message body text"

' Send the mail.
maiMail.Send
' Close object references.
Set appOutl = Nothing
Set maiMail = Nothing
Set recMessage = Nothing

Of course, you wouldn’t want to prompt for the recipient’s name in an automated
script—this would be either “hard-wired” into the script or accessed from a file.
Application automation is a wondrous thing. The sheer power of it all! (If you don’t
believe me, check out the “bonus” script at the end of this article. Talk about
power!)

ResetPassword.vbs by Chris Brooke
You didn’t think you were going to get through this without at least one script
written by yours truly, did you? In fact, this script was featured in my scripting
column some time ago. I’ve included it here for those of you who (shame, shame!)
haven’t been following my column. Besides, we’ve already noted that a primary
goal of scripting is to save time, and this one saves a bundle!

' ResetPW.vbs
' Copyright 2000, by Chris Brooke

Option Explicit
Dim objContainer, colUsers, lFlag
Set objContainer=GetObject("WinNT://domain")

ObjContainer.Filter=Array("User")

For Each colUsers in objContainer
 IFlag=colUsers.Get("UserFlags")
 If (lFlag AND &H10000) <> 0 Then
 colUsers.Put "UserFlags", lFlag XOR &H10000
 End If
 colUsers.Put "PasswordExpired", 1
 colUsers.SetInfo
Next

Small but mighty! It also checks to make sure that the “Password Never Expires”
flag isn’t set. No one should be exempt from the mandatory password policy. Not
even the CEO. This script is vital whenever your organization has a personnel
change or some other potential security hole that needs patching. Requiring users
to reset their passwords between normal, scheduled password resets is something
you’ve likely encountered several times before. I know I have—which is why I
wrote the script!

A Potpourri of Scriptlets by Thomas Eck
As our last featured script, I decided to include a flood
of scriptlets from Thomas Eck’s book, Windows

From Windows
NT/2000 ADSI
Scripting for System

Page 9 of 11

3/12/2002file://D:\DOCUME~1\czw1bl\LOCALS~1\Temp\triDCJNN.htm

NT/2000 ADSI Scripting for System Administration.
It’s packaged as a text file and includes a plethora of
script tidbits that you can add to your scripts. The
functionality of each scriptlet is completely self-
contained, and you can simply cut-and-paste them as
you see fit. These scriptlets include everything from
querying/setting AutoUnlockInterval for user accounts
to reporting disabled accounts and much more. They

were all written to be integrated into ASP pages, so you’ll have to change a few
“Response.Write” lines to “WScript.Echo” (as well as other minor changes), but
most are equally at home inside the Windows Script Host as in an ASP. Here are
some examples:

' Querying AutoUnlockInterval Using a VBScript Active Server Page
Dim Domain
Dim DomainName
DomainName = "Domain_Name_To_Manage"
Set Domain = GetObject("WinNT://" & DomainName)
Response.Write Domain.AutoUnlockInterval

' Setting a New Value for MaxBadPasswordsAllowed
' Using a VBScript Active Server Page
Dim Domain
Dim DomainName
Dim NewValue
DomainName = "Domain_Name_To_Manage"
Set Domain = GetObject("WinNT://" & DomainName)
NewValue = 5
Domain.MaxBadPasswordsAllowed = NewValue
Domain.SetInfo

' Querying MaxPasswordAge Using a VBScript Active Server Page
Dim Domain
Dim DomainName
DomainName = "Domain_Name_To_Manage"
Set Domain = GetObject("WinNT://" & DomainName)
Response.Write ((Domain.MaxPasswordAge) / 86400)

' Removing a Computer Account Using a VBScript Active Server Page
Dim Container
Dim ContainerName
Dim ComputerToRemove
ContainerName = "Container_Name_To_Manage"
Set Container = GetObject("WinNT://" & ContainerName)
ComputerToRemove = "Computer_Account_To_Remove"
Call Container.Delete("Computer", ComputerToRemove)

You What?! (A Bonus Script)
No discussion of scripting would be complete without mentioning arguably the
most famous VBScript ever to be created: “I Love You.txt.vbs.”. The “I Love You”
worm was a textbook example of the power of VBScript. Because, arguably, all
knowledge is morally neutral (only the application of knowledge can be good or
evil), I’d recommend you study this script, if you have it available (I’d send it to
you, but I’m pretty sure I’d get into serious trouble!), to gain insight into the
potential power of application automation. Just don’t send it to anyone!

Now Get Out There and Automate!
I hope these scripts will find a place of honor in your administrative toolkit. If
you’re just now getting involved in scripting, these scripts will provide an essential
launch pad to help you learn while doing. I also hope I’ve given you scripting
veterans something of value, as well. If nothing else, you now have some ideas
upon which to build even better scripts. I can see the bulb lighting up inside your
head from here. Just don’t call me when it’s time to change it.

Chris Brooke, MCSE+Internet, is a contributing editor for MCP
Magazine and product and technology editor for ComponentSource,
an online component market place for professional developers and

Administration, by
Thomas Eck
ISBN 1578702194, $45
Copyright 2000;
reproduced by
permission of New
Riders

Page 10 of 11

3/12/2002file://D:\DOCUME~1\czw1bl\LOCALS~1\Temp\triDCJNN.htm

technical decision-makers. He’s been a practicing tech head for
more than 14 years, specializing in development, integration
services, and network/Internet administration. You can contact
Chris about "Automate Your Administration" at
chrisb@componentsource.com.

back to previous page

Copyright 1996-2002, 101communications LLC. See our Privacy Policy.
For more information, e-mail editor@mcpmag.com.

Page 11 of 11

3/12/2002file://D:\DOCUME~1\czw1bl\LOCALS~1\Temp\triDCJNN.htm

